Estrés y Elementos Transponibles: Desvelando las huellas Genéticas y su significado evolutivo

Maria Pilar García Guerreiro

Authors

DOI:

https://doi.org/10.65120/evo.3

Downloads

Download data is not yet available.

References

Bodelón, A., et al. (2022). High stability of the epigenome in Drosophila interspecific hybrids. Genome Biology and Evolution, 14, evac024.

Bodelón, A., et al. (2023). Impact of heat stress on transposable element expression and derived small RNAs in Drosophila subobscura. Genome Biology and Evolution, 15, evad189.

Cosby, R. L., Chang, N. C. y Feschotte, C. (2019). Host–transposon interactions: Conflict, cooperation, and cooption. Genes & Development, 33, 1098–1116.

Craddock, E. M. (2016). Profuse evolutionary diversification and speciation on volcanic islands: Transposon instability and amplification bursts explain the genetic paradox. Biology Direct, 11, 1–15.

de Oliveira, D. S., et al. (2021). Oxidative and radiation stress induces transposable element transcription in Drosophila melanogaster. Journal of Evolutionary Biology, 34, 628–638.

García Guerreiro, M. P. (2012). What makes transposable elements move in the Drosophila genome? Heredity, 108, 461–468.

Guio, L., Vieira, C. y González, J. (2018). Stress affects the epigenetic marks added by natural transposable element insertions in Drosophila melanogaster. Scientific Reports, 8, 1–10.

Lerman, D. N. y Feder, M. E. (2005). Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster. Molecular Biology and Evolution, 22, 776–783.

Mao, H., et al. (2015). A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nature Communications, 6, 8326.

McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences of the United States of America, 36, 344–355.

McClintock, B. (1984). The significance of responses of the genome to challenge. Science, 226, 792–801.

Renaut, S., et al. (2014). Genomics of homoploid hybrid speciation: Diversity and transcriptional activity of long terminal repeat retrotransposons in hybrid sunflowers. Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 20130345.

Rey, O., et al. (2016). Adaptation to global change: A transposable element–epigenetics perspective. Trends in Ecology and Evolution, 31, 514–526.

Wang, D., et al. (2017). Transposable elements (TEs) contribute to stress-related long intergenic noncoding RNAs in plants. Plant Journal, 90, 133–146.

Published

2024-10-10

How to Cite

García Guerreiro, M. P. (2024). Estrés y Elementos Transponibles: Desvelando las huellas Genéticas y su significado evolutivo: Maria Pilar García Guerreiro. eVOLUCIÓN: SESBE Electronic Bulletin, 19(II). https://doi.org/10.65120/evo.3