Respuestas eco-evolutivas frente a la radiación ionizante en anfibios de Chernobyl
DOI:
https://doi.org/10.65120/evo.10Downloads
References
Beresford, N. A., Fesenko, S., Konoplev, A., et al. (2016). Thirty years after the Chernobyl accident: What lessons have we learnt? Journal of Environmental Radioactivity, 157, 77–89.
Beresford, N. A., Gashchak, S., Wood, M. D., et al. (2023). Mammals in the Chornobyl Exclusion Zone’s Red Forest: A motion-activated camera trap study. Earth System Science Data, 15, 911–920.
Beresford, N., Horemans, N., Copplestone, D., et al. (2020). Towards solving a scientific controversy – The effects of ionising radiation on the environment. Journal of Environmental Radioactivity, 211, 106033.
Burraco, P. y Orizaola, G. (2022). Ionizing radiation and melanism in Chornobyl tree frogs. Evolutionary Applications, 15, 1469–1479.
Burraco, P., Bonzom, J.-M., Car, C., et al. (2021a). Lack of impact of radiation on blood physiology biomarkers of Chernobyl tree frogs. Frontiers in Zoology, 18, 33.
Burraco, P., Car, C., Bonzom, J.-M., et al. (2021b). Assessment of exposure to ionizing radiation in Chernobyl tree frogs (Hyla orientalis). Scientific Reports, 11, 20509.
Burraco, P., Gabor, C., Bryant, A., et al. (2024). Ionizing radiation has negligible effects on the age, telomere length, and corticosterone levels of Chornobyl tree frogs. Biology Letters, 20, 20240287.
Burraco, P., Salla, R. y Orizaola, G. (2023). Exposure to ionizing radiation and liver histopathology in the tree frogs of Chornobyl (Ukraine). Chemosphere, 315, 137753.
Dadachova, E., Bryan, R. A., Howell, R. C., et al. (2008). The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell & Melanoma Research, 21, 192–199.
Deryabina, T. G., Kuchmel, S. V., Nagorskaya, L. L., et al. (2015). Long-term census data reveal abundant wildlife populations at Chernobyl. Current Biology, 25, 824–826.
Galván, I., Bonisoli-Alquati, A., Jenkinson, S., et al. (2014). Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Functional Ecology, 28, 1387–1403.
Geras’kin, S. A., Fesenko, S. V. y Alexakhin, R. M. (2008). Effects of non-human species irradiation after the Chernobyl NPP accident. Environment International, 34, 880–897.
Møller, A. P. y Mousseau, T. A. (2006). Biological consequences of Chernobyl: 20 years on. Trends in Ecology and Evolution, 21, 200–207.
Møller, A. P. y Mousseau, T. A. (2016). Are organisms adapting to ionizing radiation at Chernobyl? Trends in Ecology and Evolution, 31, 281–289.
Orizaola, G. (2022). Amphibians in field radioecology: A review and perspective. En: M. D. Wood, C. E. Mothersill, G. Tsakanova, T. Cresswell y G. E. Woloschak (eds.), Biomarkers of Radiation in the Environment – Robust Tools for Risk Assessment (pp. 185–203). NATO Science for Peace and Security Series A: Chemistry and Biology. Springer.
Perino, A., Pereira, H. M., Navarro, L. M., et al. (2019). Rewilding complex ecosystems. Science, 26, eaav5570.